Journal of Indian Society of Periodontology
Journal of Indian Society of Periodontology
Home | About JISP | Search | Accepted articles | Online Early | Current Issue | Archives | Instructions | SubmissionSubscribeLogin 
Users Online: 547  Home Print this page Email this page Small font size Default font size Increase font sizeWide layoutNarrow layoutFull screen layout


 
   Table of Contents    
ORIGINAL ARTICLE
Year : 2013  |  Volume : 17  |  Issue : 4  |  Page : 454-460  

Association of salivary calcium, phosphate, pH and flow rate on oral health: A study on 90 subjects


1 Department of Periodontics and Implantology, Surendera Dental College & Research Institute, Sri Ganganagar, Rajasthan, India
2 Department of Periodontics, A.B. Shetty Memorial Institute of Dental Sciences, Mangalore, India
3 Department of Oral Pathology & Microbiology, Surendera Dental College & Research Institute, Sri Ganganagar, Rajasthan, India
4 Department of Biochemistry, K.S. Hegde Medical Academy, Mangalore, India
5 Department of Pediatric Dentistry, M. S. Ramaiah Dental College, Bangalore, Karnataka, India

Date of Submission21-Sep-2011
Date of Acceptance03-Jun-2013
Date of Web Publication17-Sep-2013

Correspondence Address:
Mohamed Fiyaz
Department of Periodontics and Implantology, Surendera Dental College & Research Institute, H.H. Gardens, Sri Ganganagar, Rajasthan
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0972-124X.118316

Rights and Permissions
   Abstract 

Background and Objectives: This study was designed to compare inorganic salivary calcium, phosphate, flow rate and pH of un-stimulated saliva and oral hygiene of healthy subjects, patients with periodontitis and dental caries and to correlate salivary calcium level with the number of intact teeth. Materials and Methods: The present study consisted of 90 patients aged between 18 and 55 years and were divided into three groups, periodontitis, dental caries and controls. Oral hygiene index-simplified, probing pocket depth, clinical attachment level and number of teeth present, teeth with active carious lesions were recorded. Salivary flow rate and pH was recorded and subjected to biochemical investigation. Estimation of inorganic calcium and phosphate was performed by colorimetric method. Results: Results showed statistically significant increase in salivary inorganic calcium and phosphate levels, poor oral hygiene status, pH and salivary flow rate in patients with periodontitis when compared with dental caries group and controls. Interpretation and Conclusion : Individuals who have increased salivary inorganic calcium, phosphate, pH, flow rate and maintain poor oral hygiene could be at a higher risk for developing periodontitis and may have less dental caries and more number of intact teeth.

Keywords: Flow rate, pH, phosphate, salivary calcium


How to cite this article:
Fiyaz M, Ramesh A, Ramalingam K, Thomas B, Shetty S, Prakash P. Association of salivary calcium, phosphate, pH and flow rate on oral health: A study on 90 subjects. J Indian Soc Periodontol 2013;17:454-60

How to cite this URL:
Fiyaz M, Ramesh A, Ramalingam K, Thomas B, Shetty S, Prakash P. Association of salivary calcium, phosphate, pH and flow rate on oral health: A study on 90 subjects. J Indian Soc Periodontol [serial online] 2013 [cited 2021 Nov 28];17:454-60. Available from: https://www.jisponline.com/text.asp?2013/17/4/454/118316


   Introduction Top


Saliva is not one of the popular bodily fluids. It lacks the drama of blood, sincerity of sweat and the emotional appeal of tears. [1] Saliva is the glandular secretion, which constantly bathes the teeth and the oral mucosa. The presence of saliva is vital for the maintenance of healthy oral tissues. Severe reduction of salivary output not only results in a rapid deterioration in oral health, but also has a detrimental impact on quality-of-life. Patients suffering from dry mouth experience difficulty in maintaining oral hygiene and rapidly progressive dental caries. [2]

Mineralization favoring factors are known to maintain the integrity of enamel surfaces and intraoral mineralization capacity has been a matter of scientific interest for decades. In the presence of low plaque pH, demineralization of enamel and dental decay may occur. Far less attention has been paid to the opposite pattern of mineral exchange in the oral cavity, i.e., calculus formation. Earlier, calculus was regarded as one of the main etiologic factors of periodontitis, but the interest later faded. The reason for this is probably due to the fact that in experimental conditions, microbial plaque was shown to induce gingivitis. [3] Periodontal research began to focus on microbiology and periodontitis was thought to be induced by specific microbes.

Positive correlations have been shown between high salivary calcium content and periodontitis, [4] and between high salivary calcium content and number of intact teeth. [5] It was also found that subjects with periodontitis have more intact teeth and more intact molars than subjects who are free of the disease. [6] Therefore, the present concept is that periodontitis affected subjects have higher intraoral mineralization potential. Moreover, it is demonstrated that several mineralization favoring factors are prominent in periodontitis-affected subjects when compared with those who are periodontitis-free. [4],[7] An inverse relationship between caries and mineral content of plaque has been shown earlier. [8] Furthermore, the hypothesis of indirect correlation between dental decay and periodontal disease has been presented earlier. [9]

This study was designed to estimate and compare inorganic salivary calcium, phosphate, salivary flow rate and salivary pH of un-stimulated saliva and oral hygiene status of periodontally healthy subjects, patients with periodontitis and dental caries; to compare inorganic salivary calcium and phosphate levels, salivary pH, salivary flow rate levels and oral hygiene status in patients having periodontitis, dental caries and controls; and to correlate salivary calcium level and number of intact teeth in patients having periodontitis, dental caries and controls.

Armamentarium

The armamentarium included mouth mask, disposable latex gloves, mouth mirror, tweezers, William's graduated periodontal probe, kidney tray, graduated jar for collection of saliva and estimating flow rate, 5 ml glass bottle for transfer of specimen to the laboratory [Figure 1], salivary calcium (Agappe diagnostics, USA) and phosphorus estimation kit (Teco diagnostics, USA) [Figure 2], pH meter [Figure 3] and colorimeter [Figure 4].
Figure 1: Armamentarium for clinical examination and collection of salivary sample

Click here to view
Figure 2: Clinical picture showing periodontitis

Click here to view
Figure 3: Clinical picture showing dental caries

Click here to view
Figure 4: Clinical picture showing the control

Click here to view



   Materials and Methods Top


Ninety subjects in the age group of 18-55 years attending the Department of Periodontics, A.B. Shetty Memorial Institute of Dental Sciences, Mangalore, India comprising 30 patients affected with periodontitis, [Figure 5] 30 patients affected by dental caries and [Figure 6] 30 subjects as a control group were included in this study [Figure 7].
Figure 5: Method of measuring probing pocket depth

Click here to view
Figure 6: Method of measuring clinical attachment level using a stent

Click here to view
Figure 7: Inorganic salivary calcium and phosphate estimation kit

Click here to view


Screening examination included medical history, dental history, number of teeth present, number of teeth having active carious lesion, pocket depth and oral hygiene index-simplified (OHI-S). The inclusion criteria were patients with pockets more than 4 mm or an attachment loss of 1.5 mm or more from cemento-enamel junction. Patients should not have undergone oral prophylaxis for at least 6 months prior to this examination and patients with two or more active carious lesion.

Patients with lesser than 12 natural teeth with any systemic disease, using medications affecting salivary secretions and calcium level, pregnant and lactating women and smokers were excluded from this study.

The probing depth was measured around all teeth using Williams graduated periodontal probe. More than 4 mm of probing depth were considered as periodontitis. Clinical attachment level (CAL) was recorded according to the criteria followed by Armitage. [10] The attachment loss of more than 1.5 mm was recorded as periodontitis [Figure 8] and [Figure 9]. OHI-S (Greene and Vermillion), [11] was performed and scores were tabulated.
Figure 8: Colorimeter

Click here to view
Figure 9: pH meter

Click here to view


Collection of the salivary sample and measurement of flow rate

Patients were advised that a very small amount of saliva will ooze into their mouth in un-stimulated state and that the objective of the test was to measure the rate of flow of this secretion. [2] Saliva was collected at least 1½ h after eating. Un-stimulated whole saliva was collected by making the patient to sit in upright position at rest, bow their head and try not to move during the test. Immediately before the test begun, they were instructed to swallow any residual saliva that may be in their mouth. The saliva was allowed to accumulate for 2 min and then expectorated into the collecting vessel. If insufficient saliva was obtained then test may be conducted for a longer period of time often for 5 min. The volume was recorded in a graduated tube. Flow was expressed as ml/min.

Estimation of inorganic salivary calcium by colorimetric method

The kit used for this study was manufactured by Agappe Diagnostics, USA. Three clean and dry disposable test tubes or cuvettes were taken and labeled as blank (B), standard (S) and test (T). Distilled water of 0.01 ml is pipetted out into the test tube B, 0.01 ml of standard solution into the test tube S and 0.01 ml of test solution into the test tube T. Then, 0.01 ml of reagent is added into all the three test tubes and the contents were mixed thoroughly. The optical density of standard (S) and test (T) were measured against blank (B) on colorimeter at 570 nm. Salivary calcium was estimated by using the formula:



Estimation of inorganic salivary phosphate by colorimetric method

Three cleaned dry disposable cuvettes were taken and labeled as blank (B), standard (S) and test (T). In cuvette labeled blank (B), 1.0 ml of reagent and 0.01 ml of distilled water was added. In cuvette labeled standard (S), 1.0 ml of reagent and 0.01 ml of phosphate was added. In cuvette labeled test (T), 1.0 ml of reagent and 0.01 ml of test solution was added. [12] The reagents were mixed thoroughly. The absorbance of standard and the test was read and recorded at 340 nm versus blank as a reference. Salivary phosphate was estimated by using the formula mentioned before. The kit used for the study is manufactured by Teco Diagnostics, USA.

Criteria for diagnosing and differentiating between active and inactive carious lesions

The following tables distinguishing between active and inactive caries sites based on visual (color and glossy vs. non-glossy surface) and tactile information (rough vs. smooth surface) obtained through limited and careful use of the explorer. [13]

Estimation of pH of saliva using pH meter

Most reliable method for measuring pH is by pH meter. Scale of pH meter extends from 0 to 14 (acidic pH < 7, basic pH > 7, neutral = 7). A change of pH by one unit corresponds to 10 folds change in (H + ) concentration of the solution. Variation of pH with E may be recorded directly on the potentiometer scale graduated to read pH directly. [14]

The values obtained were subjected to statistical analysis. The mean salivary calcium, phosphate, salivary flow rate and salivary pH of un-stimulated saliva and OHI-S of the three groups of were statistically analyzed using analysis of variance. Inter-comparison between the groups was done using "Tukey's honestly significance difference" test.


   Results Top


In this study, 30 patients affected with periodontitis, 30 patients affected by dental caries and 30 subjects as control group were compared. In all the three groups, un-stimulated saliva was collected and analyzed for inorganic calcium, phosphate and pH and flow rate. Periodontal status was assessed by OHI-S, probing depth and CAL. Number of teeth present and number of intact teeth was also recorded.

The comparison of mean of salivary inorganic calcium and phosphate of periodontitis, dental caries and control group [Table 1], [Graph 1] [Additional file 1] revealed that mean of salivary inorganic calcium is 1.6957 ± 0.11209 for periodontitis group, 1.3477 ± 0.9269 for dental caries group and 1.5550 ± 1.0686 for the control group (P < 0.001). The observed mean between the three groups was statistically very highly significant. Mean of salivary inorganic phosphate is 5.7147 ± 0.71330 for periodontitis group, 3.9600 ± 0.55373 for dental caries group and 4.8767 ± 0.35006 for the control group (P < 0.001). The observed mean between the three groups was statistically very highly significant.
Table 1: Comparison of scores of salivary inorganic calcium and phosphate between periodontitis, dental caries and control group

Click here to view


Multiple comparisons and mean difference of salivary inorganic calcium and phosphate of periodontitis, dental caries and control group [Table 2], [Graph 2] [Additional file 2]. The mean difference for salivary inorganic calcium between periodontitis and dental caries is 0.3480 (P < 0.001) and between periodontitis and controls was 0.1407 (P < 0.001). The observed mean between the three groups was statistically very highly significant. The mean difference for salivary inorganic phosphate between periodontitis and dental caries was 1.7547 (P < 0.001) and between periodontitis and controls was 0.8380 (P < 0.001). The observed mean difference between the three groups was statistically very highly significant.
Table 2: Multiple comparisons and mean difference of salivary inorganic calcium and phosphate between periodontitis, dental caries and control group

Click here to view


Oral hygiene status as assessed by OHI-S was statistically very highly significant in periodontitis group when compared with dental caries and control group, showing that periodontitis group had poor oral hygiene when compared with dental caries and control group who had good oral hygiene.

A comparison of mean of salivary pH, flow rate and OHI-S between periodontitis, dental caries and control group [Table 3]a-c, [Graph 3]a-c [Additional file 3] showed that mean of salivary pH is 6.7533 ± 0.12243 for periodontitis group, 5.5733 ± 0.30050 for dental caries group and 6.2410 ± 0.56661 for the control group. The observed mean between the three groups was statistically very highly significant. The mean of salivary flow rate is 0.6900 ± 0.2607 for periodontitis group, 0.2607 ± 0.21990 for dental caries group and 0.5667 ± 0.34773 for the control group. The observed mean between the three groups was statistically very highly significant. Mean of OHI-S is 2.3780 ± 0.81326 for periodontitis group, 1.0267 ± 0.52845 for dental caries group and 0.5267 ± 0.41267 for the control group. The observed mean between the three groups was statistically very highly significant.
Table 3

Click here to view


Multiple comparisons and mean difference of salivary pH, flow rate and OHI-S between periodontitis, dental caries and control group [Table 4], [Graph 4] [Additional file 4]. The mean difference of pH between periodontitis and dental caries was 1.1800 (P < 0.001) and between periodontitis and controls was 0.5123 (P < 0.001). The observed mean difference between the three groups was statistically very highly significant. The mean difference of flow rate between periodontitis and dental caries was 0.4293 (P < 0.001) and between periodontitis and controls was 0.1233 (P > 0.05). The observed mean difference between periodontitis and dental caries, but the observed mean difference between periodontitis and controls was statistically insignificant. The mean difference of OHI-S between periodontitis and dental caries was 1.3513 (P < 0.001) and between periodontitis and controls was 1.8513 (P < 0.001). The observed mean difference between the three groups was statistically very highly significant.
Table 4: Multiple comparisons and mean difference of salivary pH, flow rate and OHI-S between periodontitis, dental caries and control group

Click here to view


Comparison of mean between the number of teeth present and number of intact teeth among periodontitis, dental caries and control group was performed [Table 5], [Graph 5] [Additional file 5]. Mean of number of teeth present is 24.7000 ± 3.56371 for periodontitis group, 20.433 ± 4.31264 for dental caries group and 25.5000 ± 2.86176 for the control group (P < 0.001). The observed mean between the three groups was statistically very highly significant. Mean of number of intact teeth is 20.5333 ± 3.530489 for periodontitis group, 14.0333 ± 4.39814 for dental caries group and 25.5000 ± 2.86176 for the control group (P < 0.001). The observed mean between the three groups was statistically very highly significant.
Table 5: Comparison of scores of number of intact teeth between periodontitis, dental caries and control group

Click here to view


Multiple comparisons and mean difference of number of teeth present and number of intact teeth between periodontitis, dental caries and control group is shown in [Table 6], [Graph 6] [Additional file 6]. The mean difference in number of teeth present between periodontitis and dental caries group was 4.2667 (P < 0.001) and between periodontitis and controls was 0.8000 (P > 0.05). The observed mean between the periodontitis and dental caries was statistically very highly significant, but the observed mean difference between periodontitis and controls was statistically not significant. The mean difference for a number of intact teeth between periodontitis and dental caries was 6.5000 (P < 0.001) and between periodontitis and controls was 1.012. The observed mean difference between periodontitis and dental caries was statistically very highly significant, but the observed mean difference between periodontitis and controls was statistically not significant.
Table 6: Multiple comparisons and mean difference of number of teeth present and number of intact teeth between periodontitis, dental caries and control group

Click here to view



   Discussion Top


Whether the two oral diseases, dental caries and periodontitis are interdependent has been a matter of interest for at least 50 years. Epidemiologic data showing high periodontal index scores in caries free population suggest an inverse relation between these diseases. Some authors however, have presented a synergistic association, claiming that both diseases are caused by same dental plaque, [15] whereas other authors have found a correlation between caries and periodontitis among caries-resistant and caries susceptible people. [16] Since 1990, Sewσn et al. with their series of studies, [4],[5],[6],[7],[17],[18] have shown that oral mineralization potential of saliva plays an important role in periodontal health and disease. Mineralization favoring factors are known to maintain the integrity of enamel surfaces and intraoral mineralization capacity has been a matter of scientific interest for decades. In the presence of low plaque pH, demineralization of enamel and dental decay may occur. [18]

In our present study when salivary inorganic calcium and phosphate levels were compared in patients with periodontitis, dental caries and control group, the results were statistically very highly significant showing high levels of calcium and phosphate in periodontitis patients when compared to healthy controls and dental caries group. This is in accordance with a study conducted by Sewón et al. who showed positive correlations between high salivary calcium content and periodontitis. [4] Patients with dental caries showed least values among all the three groups. They also found higher calcium concentration of plaque is associated with low caries experience. [8],[19]

In our study, we have also compared the levels of salivary pH, flow rate and oral hygiene status in patients with periodontitis, dental caries and control group. The results are statistically very highly significant showing high pH value in periodontitis patients when compared with healthy controls and dental caries group. Dental caries group showed lower values reflecting acidic pH favorable for enamel demineralization. This is in accordance to a study by Dong et al. whose results support the view that factors such as the frequency of acidogenic episodes may be more important in caries progression than the degree of acidogenicity during any one episode. [20]

In our study, we found that periodontitis patients had poor oral hygiene when compared to dental caries group and control group. This is in accordance to Axelsson and Lindhe who studied the effect of controlled oral hygiene procedures on caries and periodontal disease in adults and concluded that the appearance of dental caries and periodontal disease is a result of neglected oral hygiene. [15]

In our present study when number of teeth present and number of intact teeth was compared between patients with periodontitis, dental caries and control group, we found that patients with periodontitis and control group had more number of teeth, which were intact when compared with dental caries group. This is in accordance to studies by Sewón et al. that subjects with periodontitis have more intact teeth and more intact molars than subjects who are free of the disease. [6]

Therefore, the present concept is that periodontitis affected subjects have higher intraoral mineralization potential. Sewón et al. 1990, have also demonstrated that several mineralization favoring factors are prominent in periodontitis-affected subjects when compared with those who are periodontitis-free. [4],[7]

The results of this study provide evidence that subjects who have increased salivary mineralization parameters, especially inorganic salivary calcium and phosphate, high salivary pH, increased salivary flow rate and poor oral hygiene are at a higher risk of developing periodontitis as calcification of plaque occurs more readily in such patients. Furthermore, these individuals are resistant to caries and have increased number of intact teeth due to increased remineralization potential of their saliva. Salivary calcium increases the level of plaque calcium and is therefore readily available for remineralization. [21]

On the contrary, subjects with decreased salivary mineralization parameters, especially inorganic salivary calcium and phosphate, low salivary pH, reduced salivary flow rate are at a higher risk of developing dental caries as their plaque is more acidogenic and demineralization of enamel occurs more readily; therefore, these individuals have less number of intact teeth.

Hence, our data indicate that patients who develop periodontitis are resistant to dental caries and vice-versa, or in other words periodontitis and dental caries have an inverse relationship.


   Conclusion Top


The present study highlights the potential for a relationship between levels of salivary inorganic calcium, phosphate, pH, flow rate and oral hygiene and diseases like periodontitis and dental caries, which commonly affect humans and needs further detailed investigation. Conclusions that can be drawn from this study are that individuals who have increased salivary inorganic calcium, phosphate, pH, flow rate and who maintain poor oral hygiene could be at a higher risk for developing periodontitis and individuals who have higher salivary calcium may have more number of intact teeth.

 
   References Top

1.Mandel ID. The diagnostic uses of saliva. J Oral Pathol Med 1990;19:119-25.  Back to cited text no. 1
[PUBMED]    
2.Edgar M, O'Mullane D, Dawes C. Saliva and Oral Health. 2 nd ed. London: British Dental Journal; 1996.  Back to cited text no. 2
    
3.Loe H, Theilade E, Jensen SB. Experimental gingivitis in man. J Periodontol 1965;36:177-87.  Back to cited text no. 3
[PUBMED]    
4.Sewón L, Söderling E, Karjalainen S. Comparative study on mineralization-related intraoral parameters in periodontitis-affected and periodontitis-free adults. Scand J Dent Res 1990;98:305-12.  Back to cited text no. 4
    
5.Sewón L, Mäkelä M. A study of the possible correlation of high salivary calcium levels with periodontal and dental conditions in young adults. Arch Oral Biol 1990;35 Suppl: 211S-2.  Back to cited text no. 5
    
6.Sewón LA, Parvinen TH, Sinisalo TV, Larmas MA, Alanen PJ. Dental status of adults with and without periodontitis. J Periodontol 1988;59:595-8.  Back to cited text no. 6
    
7.Sewón L, Söderling E, Karjalainen S. A mineral-related feature of young plaque characteristic to periodontitis-affected adults. J Periodontol 1990;61:42-4.  Back to cited text no. 7
    
8.Ashley FP. Calcium and phosphorus concentrations of dental plaque related to dental caries in 11-to 14-year-old male subjects. Caries Res 1975;9:351-62.  Back to cited text no. 8
[PUBMED]    
9.Schroeder HE. Formation and inhibition of dental calculus. J Periodontol 1969;40:643-6.  Back to cited text no. 9
[PUBMED]    
10.Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999;4:1-6.  Back to cited text no. 10
[PUBMED]    
11.Greene JC, Vermillion JR. The simplified oral hygiene index. J Am Dent Assoc 1964;68:7-13.  Back to cited text no. 11
[PUBMED]    
12.Toora BD, Rajagopal G. Practical Biochemistry for Dental, Medical and Allied Courses. 2 nd ed. India: Ahuja Book Publisher and Distributor; 2002.  Back to cited text no. 12
    
13.Nyvad B, Machiulskiene V, Baelum V. Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries Res 1999;33:252-60.  Back to cited text no. 13
[PUBMED]    
14.Vasudevan DM, Sreekumari S. Text Book of Biochemistry for Dental Students. 4 th ed. New Dehli: Jaypee Brothers Medical Publishers; 2005.  Back to cited text no. 14
    
15.Axelsson P, Lindhe J. Effect of controlled oral hygiene procedures on caries and periodontal disease in adults. J Clin Periodontol 1978;5:133-51.  Back to cited text no. 15
[PUBMED]    
16.Skier J, Mandel ID. Comparative periodontal status of caries resistant versus susceptible adults. J Periodontol 1980;51:614-6.  Back to cited text no. 16
[PUBMED]    
17.Sewón LA, Karjalainen SM, Sainio M, Seppä O. Calcium and other salivary factors in periodontitis-affected subjects prior to treatment. J Clin Periodontol 1995;22:267-70.  Back to cited text no. 17
    
18.Sewón LA, Karjalainen SM, Söderling E, Lapinleimu H, Simell O. Associations between salivary calcium and oral health. J Clin Periodontol 1998;25:915-9.  Back to cited text no. 18
    
19.Sewon L, Hyyppa T, Paunio K, Talonpoika J. Calcium concentration of dental plaque in women with and without periodontitis. J Dent Res 1988;67:397-9.  Back to cited text no. 19
    
20.Dong YM, Pearce EI, Yue L, Larsen MJ, Gao XJ, Wang JD. Plaque pH and associated parameters in relation to caries. Caries Res 1999;33:428-36.  Back to cited text no. 20
[PUBMED]    
21.Ashley FP, Coward PY, Jalil RA, Wilson RF. Relationship between calcium and inorganic phosphorus concentrations of both resting and stimulated saliva and dental plaque in children and young adults. Arch Oral Biol 1991;36:431-4.  Back to cited text no. 21
[PUBMED]    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6], [Figure 7], [Figure 8], [Figure 9]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4], [Table 5], [Table 6]


This article has been cited by
1 The solubility of calcium oxalates explains some aspects of their underrepresentation in the oral cavity
Krista M. Vincent, Paul V. Azzopardi, Silvia Mittler, Bernd Grohe
Archives of Oral Biology. 2021; 121: 104965
[Pubmed] | [DOI]
2 Dynamic changes in salivation, salivary composition, and rumen fermentation associated with duration of high-grain feeding in cows
Ezequias Castillo-Lopez, Renee M. Petri, Sara Ricci, Raul Rivera-Chacon, Arife Sener-Aydemir, Suchitra Sharma, Nicole Reisinger, Qendrim Zebeli
Journal of Dairy Science. 2021; 104(4): 4875
[Pubmed] | [DOI]
3 Supplementation With Phytogenic Compounds Modulates Salivation and Salivary Physico-Chemical Composition in Cattle Fed a High-Concentrate Diet
Sara Ricci, Raul Rivera-Chacon, Renee M. Petri, Arife Sener-Aydemir, Suchitra Sharma, Nicole Reisinger, Qendrim Zebeli, Ezequias Castillo-Lopez
Frontiers in Physiology. 2021; 12
[Pubmed] | [DOI]
4 Selected Physicochemical Properties of Saliva in Menopausal Women—A Pilot Study
Aleksandra Cydejko, Aida Kusiak, Magdalena Emilia Grzybowska, Barbara Kochanska, Jolanta Ochocinska, Adrian Maj, Dariusz Swietlik
International Journal of Environmental Research and Public Health. 2020; 17(7): 2604
[Pubmed] | [DOI]
5 Assessment of salivary flow rate in patients with chronic periodontitis
ChitraG Vallabhan, Sujith Sivarajan, AshwinDevanarayanan Shivkumar, Vandana Narayanan, Steffi Vijayakumar, RS Indhuja
Journal of Pharmacy And Bioallied Sciences. 2020; 12(5): 308
[Pubmed] | [DOI]
6 Calcium and Phosphorus Levels in Saliva are Influenced by Genetic Polymorphisms in Estrogen Receptor Alpha and Microrna17
Erika Calvano Küchler, Raquel Fernanda Gerlach, Arthur S Cunha, Lucas A Ramazzotto, Paula Porto Spada, Paulo Nelson-Filho, Junia Ramos, Giovana Daniela Pecharki, Fernando Barbosa Jr, Alexandre Rezende Vieira, Paula Cristina Trevilatto, João Armando Brancher
Brazilian Dental Journal. 2020; 31(5): 466
[Pubmed] | [DOI]
7

Comparison of Some Salivary Characteristics in Iraqi Children with Early Childhood Caries (ECC) and Children without Early Childhood Caries

Maha Jamal Abbas, Haraa Khairi Al-Hadithi, Maha Abdul-Kareem Mahmood, Hashim Mueen Hussein
Clinical, Cosmetic and Investigational Dentistry. 2020; Volume 12: 541
[Pubmed] | [DOI]
8 Correlation between pH, buffering capacity, calcium and dental caries in schoolchildren
Efka Zabokova Bilbilova, Ana Sotirovska Ivkovska, Olivera Sarakinova, Olga Kokoceva Ivanovska, Natasha Stavreva
Macedonian Pharmaceutical Bulletin. 2018; 63(01): 63
[Pubmed] | [DOI]



 

Top
   
 
  Search
 
  
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and Me...
   Results
   Discussion
   Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed3974    
    Printed84    
    Emailed1    
    PDF Downloaded542    
    Comments [Add]    
    Cited by others 8    

Recommend this journal