Journal of Indian Society of Periodontology

REVIEW ARTICLE
Year
: 2019  |  Volume : 23  |  Issue : 6  |  Page : 504--510

Role of three-dimensional printing in periodontal regeneration and repair: Literature review


Meisha Gul, Aysha Arif, Robia Ghafoor 
 Department of Surgery, JHS Building 1stFloor Dental Clinics, Aga Khan University Hospital, Karachi, Pakistan

Correspondence Address:
Meisha Gul
Department of Surgery, JHS Building 1st Floor Dental Clinics, Aga Khan University Hospital, P.O Box 3500, Stadium Road, Karachi 74800
Pakistan

Abstract

Three-dimensional (3D) printing is the process of building 3D objects by additive manufacturing approach. It is being used in endodontics, periodontology, maxillofacial surgery, prosthodontics, orthodontics, and restorative dentistry, but our review article is focused on periodontal application. A detailed literature search was done on PubMed/Medline and Google Scholar using various key terms. A total of 45 articles were included in this study. Most of the studies were in vitro, preclinical, case reports, retrospective, and prospective studies. Few clinical trials have also been done. Periodontal applications included education models, scaffolds, socket preservation, and sinus and bone augmentation and guided implant placement. It showed better alveolar ridge preservation, better regenerative capabilities, greater reduction in pocket depth and bony fill, ease of implant placement in complex cases with greater precision and reduced time with improved outcome and an important tool for education and training using simulated models.



How to cite this article:
Gul M, Arif A, Ghafoor R. Role of three-dimensional printing in periodontal regeneration and repair: Literature review.J Indian Soc Periodontol 2019;23:504-510


How to cite this URL:
Gul M, Arif A, Ghafoor R. Role of three-dimensional printing in periodontal regeneration and repair: Literature review. J Indian Soc Periodontol [serial online] 2019 [cited 2019 Dec 11 ];23:504-510
Available from: http://www.jisponline.com/text.asp?2019/23/6/504/267871


Full Text



 Introduction



Technology has become an integral part of dentistry in recent years that led to the development of devices and tools to improve treatment methods and teaching in the fields of endodontics, implant, craniofacial, maxillofacial, orthognathic, and periodontal treatments.[1] The increased use of technology or “digital workflow” in dentistry comprises of three elements; acquisition of data through scanning, processing of data using computer-aided design software (CAD), and use the information to build objects using computer-aided-manufacturing.[2] Previously, subtractive manufacturing or milling was used to build objects with some precision, but it was time-consuming, results in wastage of material and limited application in complex anatomy.[3] To overcome these problems three-dimensional (3D) printing was introduced.[3]

3D printing is the term used to describe additive manufacturing approach that builds material layer by layer.[4] It uses the information from CAD software that measures thousands of cross sections to build the exact replica of each product.[4] In dentistry, 3D printing is being used to fabricate stone models, custom impression trays, and dental prosthesis.[4] It is also being investigated to provide tissue scaffolding in bone grafting procedures.[5] Bioprinting is the most common application of additive manufacturing.[6] The advantages include thorough preoperative planning, improved accuracy of fit of prosthesis, and reduction of procedure time.[7] The major demerit is the time and cost spent which renders the justified use of this technology in complex cases only.[7]

Different techniques of 3D printing have been reported in literature with advantages and disadvantage of each technique. Techniques include stereolithography, Photopolymer jetting, selective laser sintering, fused deposition modeling, and powder binder printers. Stereolithography uses laser beam to build object layer by laser from light curable polymerizable resin. It is costly and postprocessing is difficult.[8] Photopolymer jetting include jetting and curing of light cure polymer onto a platform in a layer by layer manner.[8] Different materials can be used such as resin, waxes, and silicon-based materials.[8] It is costly and can cause skin allergy. Selective laser sintering uses heated chamber used to soften powder material and use of laser that fuses heated fine powdered material to build up structures layer by layer.[8] Different materials can be used but need well-developed infrastructure.[8] Fused deposition modeling uses thermoplastic material extruded through nozzle onto the build platform.[8] Powder binder printers use colored water drops from inkjet printer that causes the cement or plaster to set in layer-by-layer manner on an incrementally descending platform.[8]

3D printing has promising application in various fields of dentistry such as orthodontic, endodontic, prosthodontics, maxillofacial surgery, and restorative dentistry but the aim of the present literature review was to document all the English language literature regarding applications of 3D printing in periodontology after detailed and thorough literature search.

 Methodology



A detailed literature search was done on PubMed/Medline and Google Scholar for articles reporting use of 3D printing in endodontics and periodontology, using the key terms: “3D printing,” “rapid prototyping,” “additive manufacturing,” “Dental education,” “Steriolithography,” “3D-printed scaffold,” “periodontal repair,” “periodontal regeneration,” “bioprinting,” “dental materials,” “periodontal ligament (PDL),” “selective laser sintering,” “tissue engineering,” “CAD,” “Guided Tissue Regeneration;” “Alveolar Ridge Augmentation;” “Bioprinting;” and “Sinus Floor Augmentation.”

We included the studies that were published in English language; both human and animal studies were included. All publications focusing on other applications of 3D printing were excluded. A total of 45 articles met the inclusion criteria and included in the review. Details of the included studies are given in [Table 1].{Table 1}

 Clinical Application of Three-Dimensional Printing



Periodontal applications of three-dimensional printing

Uses of 3D printing in periodontology include bio-resorbable scaffold for periodontal repair and regeneration, socket preservation, bone and sinus augmentations procedures, guided implant placement, peri-implant maintenance, and implant education. All these applications are discussed in detail in the following paragraphs.

Three-dimensional printed bioresorbable scaffold for guided bone and tissue regeneration

Recent advancement in the field of tissue engineering has led to the development of “3D printed” scaffolds. These multiphasic scaffolds consisting of both hard (bone and cementum) and soft tissues (gingiva and PDL) components of the periodontium, are not only specific for the particular tissue but are also competent mechanically.[54] With the increasing demand for tissue regeneration, these scaffolds have been investigated in different periodontal procedures such as socket preservation, guided tissue and bone regeneration, sinus, and vertical bone augmentation.[55],[56]

The purpose of these scaffolds is to promote the formation of bone, PDL, cementum, and reestablishment of connection between them. Among various materials, polycaprolactone has been widely used as a scaffold material due to its documented successful outcomes in bony regeneration.[57] The advantages of these scaffolds include 3D architecture that closely resemble extracellular matrix resulting in better regenerative capabilities.[58]

Literature search revealed that most of the studies done were preclinical, in vivo,in vitro and case reports describing promising results in the field of periodontal regeneration.[9],[10],[11],[12],[13],[15],[16],[17],[18],[19],[20],[21] Rasperini et al.[13] first time reported the use of 3D-printed scaffold in human periodontal defect (labial soft and hard tissue dehiscence). The results of this case report showed favorable results up to 12 months but failed afterward. Lei et al.[20] also reported a 15-month follow-up case of guided tissue regeneration using 3D-printed scaffold and platelet-rich fibrin in the management of bony defect around maxillary lateral incisor. He reported significant reduction in pocket depth and bony fill. In a randomized clinical trial by Sumida et al., used 3D-printed custom-made device for bone defect and reported shorter procedure time and need few screw for retention than commercial mesh group.[14] There is a lack of randomized control trials and clinical studies with long-term follow-up.

Socket preservation

The removal of tooth leads to loss of width and height of alveolar ridge due to the natural process of resorption. It has been reported in a systematic review that after tooth extraction, average reduction in alveolar bone width and height was 3.87 mm and 1.67 mm, respectively.[59] Recent advancement in technology has allowed the use of 3D-printed scaffold to preserve socket and maintain the dimension of the extraction socket. Park et al. reported a study on beagle dogs reported a predictable outcome with the use of 3D-printed polycaprolactone in socket preservation.[21] A pilot randomized controlled clinical trial by Goh et al.[22] reported the use of 3D-printed bioresorbable scaffold in socket preservation and reported normal bone healing and significantly better alveolar ridge preservation when compared to extraction socket without scaffold after 6 months. Kijartorn et al.[23] also reported in a prospective cohort that 3D-printed hydroxyapatite has potential advantages when used as bone graft material in socket preservation. Clinical studies with long-term follow-up are missing and need consideration.

Sinus and bone augmentation

Loss of vertical bone height is a common sequel after tooth extraction that ultimately affects the treatment of partially dentate patients, especially for implant placement that requires adequate bone height and width.[24] Maxillary sinus position also limits the available bone height.[24] Various methods have been reported in literature for bone and sinus augmentation such as bone grafting, distraction osteogenesis, and guided bone regeneration. Recent advancement in technology has introduced the role of 3D printing in bone and sinus augmentation and has shown positive outcomes.

One of the advantages of 3D printing is the ability to replicate the bony architecture and form macroporous internal structure of graft with minimal wastage of material because of the additive manufacturing technique. Other advantages include no ethical concerns, ample availability due to alloplastic material, less risk of infection transfer, and less chair side time of surgery.[60] There is a lack of randomized control trial, however, multiple case reports andin vivo studies have reported successful outcome after use of 3D scaffold for sinus and bone augmentation.[24],[26]

Studies have reported the effective use of various materials for printing bone graft, including monolithic monetite (dicalcium phosphate anhydrous), biphasic calcium phosphate.[25]

Three-dimensional printing for implants placement

Implant placement is a routine procedure done by dental professionals to replace missing teeth due to its predictable outcomes.[61] Implant placement is a technically demanding procedure and if not done properly, can lead to various complications such as poor esthetics, damage to anatomically important structures, infections, and implant failure.[62] Guided implant placement can prevent these complications by fabrication of surgical guides with the help of 3D printing. It helps in accurate 3D placement of implant thus preventing unwanted damage to anatomic structures and reduce time.

Multiple studies including, in vitro, in vivo, case reports, prospective and retrospective studies and several clinical trials have been done on guided implant placement and have reported positive outcomes.[27],[28],[29],[33],[45],[46],[51] Details of the studies are given in [Table 1].

Two protocols of guided implant surgery have been described in literature, static, and dynamic.[63] Static guide also called stereo-lithographic guide use the static surgical template and does not allow any changes in planned implant position during surgery, whereas dynamic approach use motion tracking technology and allow changes in implant positioning. The guides are produced using photopolymerization techniques.[64] The static approach is more commonly employed as it is less costly and less technique sensitive and both protocols have comparable failure rates.[63] Surgical guides can be supported by teeth, mucosa, bone, and pin or mini implants depending on the intraoral condition like partially dentate or edentulous and need for extensive bone surgery.[63] Tahmaseb et al. reported in a systematic review that the use of miniimplants result in more accurate implant placement and immediate loading is possible.[63]

Common complications in guided implant surgery include guide breakage during surgery, positioning error, and early implant loss due to inadequate primary stability.[65]

Studies report that using 3D-surgical guide precise implant placement is possible in partially and completely edentulous patients even using flapless approach, reducing chairside surgical time, and patient comfort postsurgery and also allow simultaneous implant placement in complex cases.[28],[29],[30],[33],[36],[38],[42],[45],[48] Studies have also reported that care should be taken while using 3D-printed template because angular and linear deviations are possible and have advised use of bone supported surgical guide rather than mucosa or tooth supported along with additional bone pins, sharp drill, physical drill stop, and at least three fixation screws in tripod arrangement to increase the stability of the guide and minimize inaccuracies[27],[31],[32],[34],[35],[37],[40],[41],[47],[66] Despite the advantages the surgeon should not over-rely on 3D-printed guide for surgical safety and caution should be taken.[39] Cost is a factor when using 3D-printed template, but studies have reported it as justified.[51] Studies have that there was no significant difference in terms of patient-related outcome both clinical and radiographic at 1 year and 3 years' follow-up between guided and nonguided surgery.[50],[52] Van de Wiele et al. Reported, that nonexperience clinicians can also accurately place an implant if supervised by experienced dentists.[43]

Use of three-dimensional printing for peri-implant maintenance

Implant surfaces are different and require special attention while cleaning and maintaining. No published literature has been found on this topic however we found one book in which the author reported that 3D-printed implant models can be used to teach implant maintenance to patients.[67]

Use of three-dimensional printing for implant education

3D printing can be used for education purpose that includes patient understanding of the procedure before giving consent for implant placement on 3D-printed model. It helps to reduce anxiety of patient. These model also help in the training of undergraduate and postgraduate students regarding implant treatment planning, placement of implant without affecting the nearby anatomic structures.[67]

 Conclusion



3D printing has revolutionized the field of periodontology. Various uses of this technology have been reported in literature in various fields including 3D-printed scaffold for socket preservation, periodontal repair and regeneration, and sinus and bone augmentation, peri-implant maintenance, and implant education. 3D-printed scaffolds show predictable outcome for bone and tissue regeneration as well as sinus and bone augmentation. Implant placement using 3D printing surgical template increases the accuracy, reduces deviation in position, incidence of complications, surgical time, postoperative pain, and swelling. 3D-printed models have a promising role as an education tool. Extra cost and time are the limiting factors. Although the use of 3D printing is of prime focus for periodontist, documented literature is limited to preclinical studies, case reports, and few clinical trials. Future implications need more good quality randomized control trials.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1Shah P, Chong BS. 3D imaging, 3D printing and 3D virtual planning in endodontics. Clin Oral Investig 2018;22:641-54.
2Katkar RA, Taft RM, Grant GT. 3D volume rendering and 3D printing (Additive manufacturing). Dent Clin North Am 2018;62:393-402.
3Petzold R, Zeilhofer HF, Kalender WA. Rapid protyping technology in medicine – Basics and applications. Comput Med Imaging Graph 1999;23:277-84.
4Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN. Additive technology: Update on current materials and applications in dentistry. J Prosthodont 2017;26:156-63.
5Chen H, Yang X, Chen L, Wang Y, Sun Y. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays. Sci Rep 2016;6:19207.
6Lantada AD, Morgado PL. Rapid prototyping for biomedical engineering: Current capabilities and challenges. Annu Rev Biomed Eng 2012;14:73-96.
7Wilde F, Plail M, Riese C, Schramm A, Winter K. Mandible reconstruction with patient-specific pre-bent reconstruction plates: Comparison of a transfer key method to the standard method – Results of anin vitro study. Int J Comput Assist Radiol Surg 2012;7:57-63.
8Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J 2015;219:521-9.
9Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 2010;89:842-7.
10Park CH, Rios HF, Jin Q, Bland ME, Flanagan CL, Hollister SJ, et al. Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials 2010;31:5945-52.
11Carlo Reis EC, Borges AP, Araújo MV, Mendes VC, Guan L, Davies JE, et al. Periodontal regeneration using a bilayered PLGA/calcium phosphate construct. Biomaterials 2011;32:9244-53.
12Park CH, Rios HF, Jin Q, Sugai JV, Padial-Molina M, Taut AD, et al. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds. Biomaterials 2012;33:137-45.
13Rasperini G, Pilipchuk SP, Flanagan CL, Park CH, Pagni G, Hollister SJ, et al. 3D-printed bioresorbable scaffold for p eriodontal repair. J Dent Res 2015;94:153S-7S.
14Sumida T, Otawa N, Kamata YU, Kamakura S, Mtsushita T, Kitagaki H, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional titanium mesh. J Craniomaxillofac Surg 2015;43:2183-8.
15Vaquette C, Fan W, Xiao Y, Hamlet S, Hutmacher DW, Ivanovski S. A biphasic scaffold design combined with cell sheet technology for simultaneous regeneration of alveolar bone/periodontal ligament complex. Biomaterials 2012;33:5560-73.
16Adel-Khattab D, Giacomini F, Gildenhaar R, Berger G, Gomes C, Linow U, et al. Development of a synthetic tissue engineered three-dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro. J Tissue Eng Regen Med 2018;12:44-58.
17Park CH, Kim KH, Rios HF, Lee YM, Giannobile WV, Seol YJ. Spatiotemporally controlled microchannels of periodontal mimic scaffolds. J Dent Res 2014;93:1304-12.
18Costa PF, Vaquette C, Zhang Q, Reis RL, Ivanovski S, Hutmacher DW. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure. J Clin Periodontol 2014;41:283-94.
19Pilipchuk SP, Monje A, Jiao Y, Hao J, Kruger L, Flanagan CL, et al. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv Healthc Mater 2016;5:676-87.
20Lei L, Yu Y, Ke T, Sun W, Chen L. The application of three-dimensional printing model and platelet-rich fibrin technology in guided tissue regeneration surgery for severe bone defects. J Oral Implantol 2019;45:35-43.
21Park SA, Lee HJ, Kim KS, Lee SJ, Lee JT, Kim SY, et al. In vivo evaluation of 3D-printed polycaprolactone scaffold implantation combined with β-TCP powder for alveolar bone augmentation in a beagle defect model. Materials (Basel) 2018;11. pii: E238.
22Goh BT, Teh LY, Tan DB, Zhang Z, Teoh SH. Novel 3D polycaprolactone scaffold for ridge preservation – A pilot randomised controlled clinical trial. Clin Oral Implants Res 2015;26:271-7.
23Kijartorn P, Thammarakcharoen F, Suwanprateeb J, Buranawat B. The use of three dimensional printed hydroxyapatite granules in alveolar ridge preservation. Key Eng Mater 2017;751:663-7.
24Tamimi F, Torres J, Gbureck U, Lopez-Cabarcos E, Bassett DC, Alkhraisat MH, et al. Craniofacial vertical bone augmentation: A comparison between 3D printed monolithic monetite blocks and autologous onlay grafts in the rabbit. Biomaterials 2009;30:6318-26.
25Torres J, Tamimi F, Alkhraisat MH, Prados-Frutos JC, Rastikerdar E, Gbureck U, et al. Vertical bone augmentation with 3D-synthetic monetite blocks in the rabbit calvaria. J Clin Periodontol 2011;38:1147-53.
26Mangano C, Barboni B, Valbonetti L, Berardinelli P, Martelli A, Muttini A, et al. In vivo behavior of a custom-made 3D synthetic bone substitute in sinus augmentation procedures in sheep. J Oral Implantol 2015;41:240-50.
27Xu LW, You J, Zhang JX, Liu YF, Peng W. Impact of surgical template on the accuracy of implant placement. J Prosthodont 2016;25:641-6.
28Sarment DP, Sukovic P, Clinthorne N. Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 2003;18:571-7.
29Ozan O, Turkyilmaz I, Ersoy AE, McGlumphy EA, Rosenstiel SF. Clinical accuracy of 3 different types of computed tomography-derived stereolithographic surgical guides in implant placement. J Oral Maxillofac Surg 2009;67:394-401.
30Valente F, Schiroli G, Sbrenna A. Accuracy of computer-aided oral implant surgery: A clinical and radiographic study. Int J Oral Maxillofac Implants 2009;24:234-42.
31Cassetta M, Stefanelli LV, Giansanti M, Di Mambro A, Calasso S. Depth deviation and occurrence of early surgical complications or unexpected events using a single stereolithographic surgi-guide. Int J Oral Maxillofac Surg 2011;40:1377-87.
32Cassetta M, Di Mambro A, Giansanti M, Stefanelli LV, Cavallini C. The intrinsic error of a stereolithographic surgical template in implant guided surgery. Int J Oral Maxillofac Surg 2013;42:264-75.
33Vieira DM, Sotto-Maior BS, Barros CA, Reis ES, Francischone CE. Clinical accuracy of flapless computer-guided surgery for implant placement in edentulous arches. Int J Oral Maxillofac Implants 2013;28:1347-51.
34Lee JH, Park JM, Kim SM, Kim MJ, Lee JH, Kim MJ. An assessment of template-guided implant surgery in terms of accuracy and related factors. J Adv Prosthodont 2013;5:440-7.
35Arisan V, Karabuda ZC, Pişkin B, Özdemir T. Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-aided implant placement. Part II: Reliability of mucosa-supported stereolithographic guides. Clin Implant Dent Relat Res 2013;15:907-17.
36Ersoy AE, Turkyilmaz I, Ozan O, McGlumphy EA. Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: Clinical data from 94 implants. J Periodontol 2008;79:1339-45.
37Verhamme LM, Meijer GJ, Boumans T, de Haan AF, Bergé SJ, Maal TJ. A clinically relevant accuracy study of computer-planned implant placement in the edentulous maxilla using mucosa-supported surgical templates. Clin Implant Dent Relat Res 2015;17:343-52.
38Vasak C, Watzak G, Gahleitner A, Strbac G, Schemper M, Zechner W. Computed tomography-based evaluation of template (NobelGuide™)-guided implant positions: A prospective radiological study. Clin Oral Implants Res 2011;22:1157-63.
39Stübinger S, Buitrago-Tellez C, Cantelmi G. Deviations between placed and planned implant positions: An accuracy pilot study of skeletally supported stereolithographic surgical templates. Clin Implant Dent Relat Res 2014;16:540-51.
40Di Giacomo GA, da Silva JV, da Silva AM, Paschoal GH, Cury PR, Szarf G. Accuracy and complications of computer-designed selective laser sintering surgical guides for flapless dental implant placement and immediate definitive prosthesis installation. J Periodontol 2012;83:410-9.
41D'haese J, Van De Velde T, Elaut L, De Bruyn H. A prospective study on the accuracy of mucosally supported stereolithographic surgical guides in fully edentulous maxillae. Clin Implant Dent Relat Res 2012;14:293-303.
42Van Assche N, van Steenberghe D, Quirynen M, Jacobs R. Accuracy assessment of computer-assisted flapless implant placement in partial edentulism. J Clin Periodontol 2010;37:398-403.
43Van de Wiele G, Teughels W, Vercruyssen M, Coucke W, Temmerman A, Quirynen M. The accuracy of guided surgery via mucosa-supported stereolithographic surgical templates in the hands of surgeons with little experience. Clin Oral Implants Res 2015;26:1489-94.
44Pozzi A, Tallarico M, Marchetti M, Scarfò B, Esposito M. Computer-guided versus free-hand placement of immediately loaded dental implants: 1-year post-loading results of a multicentre randomised controlled trial. Eur J Oral Implantol 2014;7:229-42.
45Arisan V, Karabuda CZ, Ozdemir T. Implant surgery using bone-and mucosa-supported stereolithographic guides in totally edentulous jaws: Surgical and post-operative outcomes of computer-aided vs. standard techniques. Clin Oral Implants Res 2010;21:980-8.
46Abboud M, Wahl G, Calvo-Guirado JL, Orentlicher G. Application and success of two stereolithographic surgical guide systems for implant placement with immediate loading. Int J Oral Maxillofac Implants 2012;27:634-43.
47Di Giacomo GA, Cury PR, de Araujo NS, Sendyk WR, Sendyk CL. Clinical application of stereolithographic surgical guides for implant placement: Preliminary results. J Periodontol 2005;76:503-7.
48Mangano FG, Hauschild U, Admakin O. Full in-office guided surgery with open selective tooth-supported templates: A prospective clinical study on 20 patients. Int J Environ Res Public Health 2018;15. pii: E2361.
49Lindeboom JA, van Wijk AJ. A comparison of two implant techniques on patient-based outcome measures: A report of flapless vs. conventional flapped implant placement. Clin Oral Implants Res 2010;21:366-70.
50Bernard L, Vercruyssen M, Duyck J, Jacobs R, Teughels W, Quirynen M. A randomized controlled clinical trial comparing guided with nonguided implant placement: A 3-year follow-up of implant-centered outcomes. J Prosthet Dent 2019. pii: S0022-3913(18)30766-2.
51Younes F, Eghbali A, De Bruyckere T, Cleymaet R, Cosyn J. A randomized controlled trial on the efficiency of free-handed, pilot-drill guided and fully guided implant surgery in partially edentulous patients. Clin Oral Implants Res 2019;30:131-8.
52Vercruyssen M, van de Wiele G, Teughels W, Naert I, Jacobs R, Quirynen M. Implant-and patient-centred outcomes of guided surgery, a 1-year follow-up: An RCT comparing guided surgery with conventional implant placement. J Clin Periodontol 2014;41:1154-60.
53Shen P, Zhao J, Fan L, Qiu H, Xu W, Wang Y, et al. Accuracy evaluation of computer-designed surgical guide template in oral implantology. J Craniomaxillofac Surg 2015;43:2189-94.
54Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res 2015;94:143S-52S.
55Carter SD, Costa PF, Vaquette C, Ivanovski S, Hutmacher DW, Malda J. Additive biomanufacturing: An advanced approach for periodontal tissue regeneration. Ann Biomed Eng 2017;45:12-22.
56Ivanovski S, Vaquette C, Gronthos S, Hutmacher DW, Bartold PM. Multiphasic scaffolds for periodontal tissue engineering. J Dent Res 2014;93:1212-21.
57Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE. Scaffold design for bone regeneration. J Nanosci Nanotechnol 2014;14:15-56.
58Castillo-Dalí G, Velázquez-Cayón R, Serrera-Figallo MA, Rodríguez-González-Elipe A, Gutierrez-Pérez JL, Torres-Lagares D. Importance of poly(lactic-co-glycolic acid) in scaffolds for guided bone regeneration: A focused review. J Oral Implantol 2015;41:e152-7.
59Van der Weijden F, Dell'Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: A systematic review. J Clin Periodontol 2009;36:1048-58.
60Yen HH, Stathopoulou PG. CAD/CAM and 3D-printing applications for alveolar ridge augmentation. Curr Oral Health Rep 2018;5:127-32.
61Moraschini V, Poubel LA, Ferreira VF, Barboza Edos S. Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: A systematic review. Int J Oral Maxillofac Surg 2015;44:377-88.
62Camargo IB, Van Sickels JE. Surgical complications after implant placement. Dent Clin North Am 2015;59:57-72.
63Tahmaseb A, Wismeijer D, Coucke W, Derksen W. Computer technology applications in surgical implant dentistry: A systematic review. Int J Oral Maxillofac Implants 2014;29 Suppl: 25-42.
64D'haese J, Ackhurst J, Wismeijer D, De Bruyn H, Tahmaseb A. Current state of the art of computer-guided implant surgery. Periodontol 2000 2017;73:121-33.
65D'haese J, Vervaeke S, Verbanck N, De Bruyn H. Clinical and radiographic outcome of implants placed using stereolithographic guided surgery: A prospective monocenter study. Int J Oral Maxillofac Implants 2013;28:205-15.
66Lee SJ, Jung IY, Lee CY, Choi SY, Kum KY. Clinical application of computer-aided rapid prototyping for tooth transplantation. Dent Traumatol 2001;17:114-9.
67Suzuki T. The Use of 3D Printing in Dental Implant Education. 1st ed. Manalapan Township, New Jersey: Dental Learning; 2016. p. 1-12.