Journal of Indian Society of Periodontology
Journal of Indian Society of Periodontology
Home | About JISP | Search | Accepted articles | Online Early | Current Issue | Archives | Instructions | SubmissionSubscribeLogin 
Users Online: 2457  Home Print this page Email this page Small font size Default font size Increase font sizeWide layoutNarrow layoutFull screen layout
Year : 2015  |  Volume : 19  |  Issue : 1  |  Page : 32-36

In vitro evaluation of mechanical properties of platelet-rich fibrin membrane and scanning electron microscopic examination of its surface characteristics

1 Department of Periodontics, Government Dental College, Kottayam, India
2 Department of Government Dental College, Calicut, Kerala, India

Correspondence Address:
George Sam
Department of Periodontics, Government Dental College, Kottayam 686 008, Kerala
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0972-124X.145821

Rights and Permissions

Background: The aim of this study was to evaluate the mechanical properties of the platelet-rich fibrin (PRF) membrane and to compare these properties with that of commercially available collagen membranes used for guided tissue regeneration (GTR) procedures. Scanning electron microscopic (SEM) examination of PRF membrane was also performed to determine the cell distribution pattern within the different regions of the membrane. Materials and Methods: Modulus of elasticity and hardness of (i) PRF membrane (ii) bovine collagen membrane and (iii) fish collagen membrane were assessed by performing surface indentation test using T1 950 Triboindenter. The in vitro degradation tests were conducted by placing the (i) PRF membrane (ii) bovine collagen membrane and (iii) fish collagen membrane of equal sizes (10 mm Χ 5 mm) in 5 ml of pH 7.4 phosphate buffer solution on a shaker set at 40 rpm for 1-week. The degradation profiles were expressed as the accumulated weight losses of the membrane. SEM evaluation of the PRF membrane was done under both low and high magnification. Results: Young's Modulus of elasticity was found to be 0.35 GPa for PRF membrane, 2.74 GPa for bovine collagen membrane and 1.92 GPa for fish collagen. The hardness was 10.67 MPa for PRF membrane, 110.7 MPa for bovine collagen membrane and 90.5 MPa for fish collagen membrane. PRF membrane degraded by about 36% of initial weight after a 1-week in vitro shaking test. Fish collagen membrane degraded by about 8% of initial weight, bovine collagen membrane degraded by about 3% of initial weight. Dense clusters of platelets formed due to extensive aggregation, and few leukocytes were observed in buffy coat area. Conclusions: The preliminary findings from the assessment of the mechanical properties of PRF membrane showed that it was lacking in several desired properties when compared to commercially available collagen membranes. Lack of rigidity and faster degradation may limit its application in GTR procedures.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded618    
    Comments [Add]    

Recommend this journal